Search results

Search for "capillary origami" in Full Text gives 1 result(s) in Beilstein Journal of Nanotechnology.

Capillary origami: superhydrophobic ribbon surfaces and liquid marbles

  • Glen McHale,
  • Michael I. Newton,
  • Neil J. Shirtcliffe and
  • Nicasio R. Geraldi

Beilstein J. Nanotechnol. 2011, 2, 145–151, doi:10.3762/bjnano.2.18

Graphical Abstract
  • wrapping and relate it to the same transition condition known to apply to superhydrophobic surfaces. The results are given for both droplets being wrapped by thin ribbons and for solid grains encapsulating droplets to form liquid marbles. Keywords: capillary origami; Cassie; contact angle
  • = (κb/γLV)1/2 the solid can become deformed and shaped by the liquid. In practice, this effect has been given the name “capillary origami” based on experiments showing how films of polydimethylsiloxane (PDMS) shaped in two-dimensions can be folded by evaporating droplets of water to produce a designed
  • three-dimensional shape [3][4]; an effect stronger than the dimpling of an elastomer surface by a deposited droplet [5]. Capillary origami is more than a curiosity and has implications for technological applications in creating three-dimensional structures from initially flat films through the capillary
PDF
Album
Full Research Paper
Published 10 Mar 2011
Other Beilstein-Institut Open Science Activities